A Note on Weakly Complete Sequences

نویسندگان

  • Alyson Fox
  • Michael P. Knapp
چکیده

A weakly complete sequence is an increasing sequence of positive integers with the property that every sufficiently large integer can be written as a sum of distinct terms of the sequence. In this article, we give a partial proof of a conjecture of Paul giving a formula for weakly complete sequences formed using a natural procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on primary-like submodules of multiplication modules

Primary-like and weakly primary-like submodules are two new generalizations of primary ideals from rings to modules. In fact, the class of primary-like submodules of a module lie between primary submodules and weakly primary-like submodules properly.  In this note, we show that these three classes coincide when their elements are submodules of a multiplication module and satisfy the primeful pr...

متن کامل

Note on regular and coregular sequences

Let R be a commutative Noetherian ring and let M be a nitely generated R-module. If I is an ideal of R generated by M-regular sequence, then we study the vanishing of the rst Tor functors. Moreover, for Artinian modules and coregular sequences we examine the vanishing of the rst Ext functors.

متن کامل

On the fixed point theorems in generalized weakly contractive mappings on partial metric spaces

In this paper, we prove a fixed point theorem for a pair of generalized weakly contractive mappings in complete partial metric spaces. The theorems presented are generalizations of very recent fixed point theorems due to Abdeljawad, Karapinar and Tas. To emphasize the very general nature of these results, we illustrate an example.

متن کامل

Fixed point theorems for weakly contractive mappings on g-Metric spaces and a homotopy result

In this paper, we give some xed point theorems for '-weak contractivetype mappings on complete G-metric space, which was given by Zaed andSims [1]. Also a homotopy result is given.

متن کامل

A Further Note on Runs in Independent Sequences

Given a sequence of letters generated independently from a finite alphabet, we consider the case when more than one, but not all, letters are generated with the highest probability. The length of the longest run of any of these letters is shown to be one greater than the length of the longest run in a particular state of an associated Markov chain. Using results of Foulser and Karlin (19...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012